23 research outputs found

    Comparing daylighting performance assessment of buildings in scale models and test modules

    Get PDF
    Physical models are commonly used to assess daylighting performance of buildings using sky simulators for purpose of research as well as practice. Recent studies have pointed out the general tendency of scale model assessments to overestimate the performance, usually expressed through work plane illuminance and daylight factor profiles, when compared to the real buildings. The cause of the discrepancy between buildings and scale models is due to several sources of experimental errors, such as modelling of building details, mocking-up of surface reflectances and glazing transmittance, as well as photometer features. To analyse the main sources of errors, a comparison of a full scale test module designed for experimentation of daylighting systems and its 1:10 scale model, placed within identical outdoor daylighting conditions, was undertaken. Several physical parameters were studied in order to determine their impact on the daylighting performance assessment. These include the accurate mocking-up of surface reflectances, the scale model location, as well as the photometric sensor properties. The experimental study shows that large discrepancies can occur between the performance figures. They lead, on average, to a relative divergence of + 60 % to + 105 % in favor of the scale model for different points located in the side lit room. Some of these discrepancies were caused by slight differences in surface reflectances and photometer cosine responses. These discrepancies were reduced to a + 30 % to + 35 % relative divergence, by putting in the effort to carefully mock up the geometrical and photometrical features of the test module. This included a sound calibration of photometric sensors, whose cosine-response appeared at the end to be responsible for the remaining relative divergence observed between the daylighting performance figures

    Comparing physical and virtual methods for daylight performance modelling including complex fenestration systems

    No full text
    Physical or virtual models are commonly employed to visualize the conceptual ideas of architects, lighting designers and daylighting researchers. The models are also used to assess the daylighting performance of their buildings, particularly when Complex Fenestration Systems (CFS) are considered. Recent studies have revealed a general tendency of physical models to over- estimate the performance, usually expressed through work plane illuminance and daylight factor profiles, when compared to that of the real building. These discrepancies can be attributed to several experimental errors. To analyze the main sources of error, a set of comparisons between a real building, a virtual model and a physical model was undertaken. The real building in our case consisted of a full scale test module with a south-facing windows designed for experimentation on daylighting systems. A virtual model was a computed model created in Radiance program while the physical model was a scale model (1:10) of the real case. The fenestration systems considered in this study were a simple window (double glazing) and two CFS (Laser-cut panel and Prismatic film). The physical model was placed in outdoor conditions similar to that of the real building as well as under a scanning sky simulator (for both real sky luminance distribution and CIE standard sky); the virtual model simulations were carried out with the program Radiance using the GenSky function (for CIE standard sky) and the Partial Daylight Factor (PDF) method, the later using the real sky luminance distribution acquired by a digital sky scanner at the same time as the real building's daylight performance was assessed. The daylighting performances of the building, daylight factor (DF) for overcast sky and illuminance ratio (IR) for clear sky, were monitored using illuminance meters: a set of sensors for exterior illuminance and another set of equally spaced 7 sensors placed at 1m intervals starting from the window plane for the interior space were used for that purpose. The interior surface luminance of both real building and physical model was measured using a luminance meter and a High Dynamic Range (HDR) imaging technique (within the Photosphere program). The Radiance program was used to determine the interior surface luminance within the virtual model. The measured performance of the real case, physical models and virtual models were compared, the causes of discrepancies between the real building and models were analyzed. The causes of errors that were evaluated were modeling of building details and dimensions, CFS modeling, mocking-up of the photometric properties (surface reflectance and window transmittance), model location as well as photometer features. To study the impact of these error sources on daylighting performance assessment, virtual models created using the Radiance program were used to achieve a sensitivity analysis of modeling errors. The significant factors were considered, leading to a set of modeling guidelines. The experimental study shows that large discrepancies can occur in daylighting performance figures. For example if glazings are omitted from the model's window, a relative divergence of 25% to 40% can be found at different points in the room, suggesting more light entering than actually measured in the real building. Inaccuracy in window transmittance inaccuracy is a major cause of errors commonly found in daylight modeling. In addition, significant discrepancies can be caused by even slight error in surface reflectance values. Only 10% overestimation of surface reflectance modeling leads up to 80% relative errors in work plane illuminance for a simple window and up to 90% for the assessment of CFS. Continuous sky distribution presented more accurate results than 145 sky sectors simulation, particularly when CFS were evaluated. These discrepancies can be reduced by making an effort to mock up the geometric and photometric features including the daylight simulation of the models carefully. A checklist presented in this thesis can be used as a guideline to help the daylight designers to estimate and avoid errors when assessing daylighting performance

    Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    No full text
    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the redirected light spreading it within a small range of outgoing angles. This solution was found to reduce glare to imperceptible levels while retaining for the most part the illuminance levels achieved solely by the daylighting film

    Modelling Complex Fenestration Systems using physical and virtual models

    No full text
    Physical or virtual models are commonly used to visualize the conceptual ideas of architects, lighting designers and researchers; they are also employed to assess the daylighting performance of buildings, particularly in cases where Complex Fenestration Systems (CFS) are considered. Recent studies have however revealed a general tendency of physical models to over-estimate this performance, compared to those of real buildings; these discrepancies can be attributed to several reasons. In order to identify the main error sources, a series of comparisons in-between a real building (a single office room within a test module) and the corresponding physical and virtual models was undertaken. The physical model was placed in outdoor conditions, which were strictly identical to those of the real building, as well as underneath a scanning sky simulator. The virtual model simulations were carried out by way of the Radiance program using the GenSky function; an alternative evaluation method, named Partial Daylight Factor method (PDF method), was also employed with the physical model together with sky luminance distributions acquired by a digital sky scanner during the monitoring of the real building. The overall daylighting performance of physical and virtual models were assessed and compared. The causes of discrepancies between the daylighting performance of the real building and the models were analysed. The main identified sources of errors are the reproduction of building details, the CFS modelling and the mocking-up of the geometrical and photometrical properties. To study the impact of these errors on daylighting performance assessment, computer simulation models created using the Radiance program were also used to carry out a sensitivity analysis of modelling errors. The study of the models showed that large discrepancies can occur in daylighting performance assessment. In case of improper mocking- up of the glazing for instance, relative divergences of 25–40% can be found in different room locations, suggesting that more light is entering than actually monitored in the real building. All these discrepancies can however be reduced by making an effort to carefully mock up the geometry and photometry of the real building. A synthesis is presented in this article which can be used as guidelines for daylighting designers to avoid or estimate errors during CFS daylighting performance assessment

    Electricity Consumption in Higher Education Buildings in Thailand during the COVID-19 Pandemic

    No full text
    The COVID-19 pandemic forced higher education institutions to switch to online learning for most of 2020 and 2021 for the safety of their students and staff, which significantly impacted campus resource consumption. This study aims to analyze the changes in electricity consumption in higher education buildings based on comparisons of three academic years to understand more about the energy implications of the post-COVID-19 era. The electricity data were collected from 181 samples of the electricity meter records at Chulalongkorn University, Thailand. When compared to the typical academic year in 2018, the results indicate that electricity consumption in 2019 and 2020 decreased by 20.92% and 35.50%, respectively. The academic and the library-type buildings marked the biggest change in electricity reduction. The smallest change was found in the research type as its essential work remained on campus. Only electricity consumption in the residence type increased due to the long periods of online learning policies. Finally, the findings suggest that teaching and learning activities have a strong influence on electricity consumption in higher education buildings. The facilities and learning methods related to these activities should be carefully discussed as elements of an effective strategy to manage electricity demands at the university level

    Electricity Consumption in Higher Education Buildings in Thailand during the COVID-19 Pandemic

    No full text
    The COVID-19 pandemic forced higher education institutions to switch to online learning for most of 2020 and 2021 for the safety of their students and staff, which significantly impacted campus resource consumption. This study aims to analyze the changes in electricity consumption in higher education buildings based on comparisons of three academic years to understand more about the energy implications of the post-COVID-19 era. The electricity data were collected from 181 samples of the electricity meter records at Chulalongkorn University, Thailand. When compared to the typical academic year in 2018, the results indicate that electricity consumption in 2019 and 2020 decreased by 20.92% and 35.50%, respectively. The academic and the library-type buildings marked the biggest change in electricity reduction. The smallest change was found in the research type as its essential work remained on campus. Only electricity consumption in the residence type increased due to the long periods of online learning policies. Finally, the findings suggest that teaching and learning activities have a strong influence on electricity consumption in higher education buildings. The facilities and learning methods related to these activities should be carefully discussed as elements of an effective strategy to manage electricity demands at the university level
    corecore